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A FREQUENCY- AND TIME-DOMAIN INVESTIGATION INTO THE GEOMETRIC
OPTICS APPROXIMATION FOR WIRELESS INDOOR APPLICATIONS

Michael G. Cotton,* Edward F. Kuester,** and Christopher L. Holloway***

In this study we investigated the geometric optics (GO) approximation to the fields
of an incremental electric dipole above a half plane for geometries typical of wireless
indoor communications.  This inspection was motivated by efforts to establish a ray-
trace model to characterize indoor radio propagation channels.  Eight canonical
geometries were examined to isolate near-surface and near-field effects that are not
accounted for in the GO approximation.  Common building materials and physical
dimensions (i.e., antenna separation and height) as small as 1 cm were investigated
for frequencies up to 8 GHz.  Theoretical fields were calculated via numerical
evaluation of Sommerfeld integrals and compared to corresponding GO
approximations.  As expected, GO approximations agreed with theoretical results
when the source and observation points were multiple wavelengths above the surface
and relatively far apart.  Close to the surface, an interesting interference pattern in the
frequency domain was caused by adjacent fields in the two media propagating at
different speeds.  This so-called “pseudo-lateral wave” phenomenon is discussed and
demonstrated in various examples.  Next, we emulated system specifications (i.e.,
center frequency and bandwidth), computed time-domain impulse responses, and
used delay spread as a metric to quantify GO error.  Results show that mechanisms
exist under certain circumstances which invalidate GO assumptions; conventional
expressions to complement GO approximations are summarized.

Key words: geometric optics; indoor propagation channel; propagation over ground; Sommerfeld
integral; numerical integration; ray-trace model; impulse response; delay spread

1.  INTRODUCTION

With the growing emergence of indoor wireless local area networks (WLAN), characterization of
the indoor propagation channel has become more important.  This environment can be characterized
in either the frequency or time domain.  Frequency-domain modeling takes the form of field-strength
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 predictions over a volume of interest for specified frequencies.  In contrast, time-domain modeling
is based on the impulse response of the particular environment.  For digital communications, the
impulse response is a quantity used to characterize the multipath propagation environment.
Propagation effects on a transmitted signal are best described by a linear-system representation

where a(t) and b(t) are the symbol waveforms before and after propagation through the channel, g(t,�)
is the time-variable impulse response of the propagation channel, and � is the delay variable.

Multipath propagation environments, such as the indoor-propagation channel, exhibit characteristic
impulse responses.  For line-of-sight indoor channels, an impulse response is composed of a direct
ray plus numerous rays due to reflections off objects, diffraction around objects, and transmission
through objects.  Impulse response data is useful for the analysis and simulation of digital
transmission because it quantifies communication-link degradation within a channel.  More
specifically, the delay spread �spr of a channel impulse response is a measure of time-dispersion due
to multipath [1, 2] and is defined as 

where �� is the first moment or mean delay given by

As a rule of thumb, small �spr indicates little degradation, whereas if �spr is large then severe distortion
occurs.  Therefore, the data rate may need to be decreased in a high-delay-spread multipath
environment in order to maintain or reduce the bit-error rate.

A threshold associated with the calculation of delay spread exists to nullify the noise contribution
(i.e., values of |g(t,�)|2 below the threshold are set to zero).  Throughout this report, a threshold of -30
dB relative to the peak of the impulse is used for all delay spread calculations.  Delay spread
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quantifies inter-symbol interference and has been the subject of numerous publications such as [1-
10].  In most cases, statistical analyses were necessary to account for stochastic processes within the
time-variant channel.  In this report we are not interested in the time-variant nature of the channel,
denoted by the dependent variable t in g(t,�), nor statistical procedures to account for stochastic
processes.  Hence, we assume that the channel is deterministic and that a single impulse response
is completely representative.

Various approaches are used to determine impulse-response delay spread for indoor applications,
such as ray-trace models [11-24], statistical models based on measurements [25-33], simplified-
decay models [34, 35], and full numerical techniques [36-39] (e.g., finite-difference time-domain).
The most popular of these techniques is ray-tracing, which is based on GO and assumes that near-
surface and near-field effects are negligible and that Fresnel reflection coefficients are valid.  For
indoor applications, however, transmit and/or receive antennas are likely to be mounted close to a
wall or ceiling.  Therefore, the GO approximation is in question since the antennas are only a few
centimeters from reflecting surfaces.  GO errors, relative to the numerical approximation of the
general Sommerfeld formulation, are presented here in frequency-domain field-strength predictions
and time-domain impulse-response results.

Our goal is to investigate the shortcomings of the GO approximation for antennas mounted close to
reflecting surfaces.  We focus on a classic problem – dipole radiation above a lossy half space – and
consider the elementary vertical electric dipole (VED) and x-aligned elementary horizontal electric
dipole (HED) as sources.  If there exists a set of substantive single-reflection cases which produce
significant near-surface and near-field errors under practical frequency and geometric constraints,
then we conclude that GO is an inadequate approximation. 

This report is organized in the following manner.  In Section 2, we summarize Sommerfeld’s
classical integral formulation and provide geometric optics expressions for elementary dipoles above
an infinite ground plane.  Numerical techniques to evaluate Sommerfeld integrals are given in
Section 3.  Frequency-domain field strength results are given in Section 4.  The frequency-domain
results are transformed to a complex-baseband representation of a passband signal in order to
calculate the channel impulse response.  A detailed explanation of the time-domain analyses is given
in Section 5, and corresponding results are shown in Section 6.

2.  EXPRESSIONS FOR RADIATION IN FREE SPACE OVER GROUND

In order to isolate errors associated with the GO approximation for typical indoor scenarios, we focus
on a single reflection off a planar surface.  The classic problem of elementary dipole radiation above
a ground plane has been analyzed extensively [40-46].  The geometry and nomenclature are shown
in Figures 1 and 2.  Region 0 is free space; the source dipole and receiver, regardless of nature and
orientation, are located in region 0 at heights h and z above the interface, respectively.  Region 1 lies
beneath the interface; its material composition is defined by its relative dielectric constant �r and
conductivity �.  All media are assumed to be isotropic, homogeneous, and non-magnetic.
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Figure 1. Parallel polarization geometry for E-fields
above dielectric half-space.

Figure 2. Perpendicular polarization geometry for E-
fields above dielectric half-space.
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The general formulation of the two-media boundary problem is based on the solution of Maxwell’s
equations subject to boundary conditions at the interface.  The differential form of Maxwell’s
equations, assuming exp(+j�t) harmonic time dependence for the fields, is

where  is an electric field,  is a magnetic field,  is an impressed current source, capital letters�E �H �J
denote time-harmonic fields (in contrast to time-instantaneous field variables, which are in lower
case), and � denotes a vector.  The electric-type Hertz vector  is useful for solving electromagnetic��

fields generated by a time-harmonic electric current; fields are expressed in terms of  as��

An alternative form to Maxwell’s equations is the Helmholtz equation, given by

where k1
2 = �2µ0(�r�0 - j�/�) defines the wave number of medium 1.  Boundary conditions enforce

continuity of tangential  and  components at the interface and allow for a unique solution of .�E �H ��

2.1.  Sommerfeld Formulation

The classic Sommerfeld formulation for a dipole above a half plane is a general solution that
contains complex, highly oscillatory integrals.  Sommerfeld integrals provide an exact solution, but
have yet to be solved analytically.  Numerical schemes for evaluating these integrals are covered in
Section 3.  The formulations for VED and HED are given in the following subsections.
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2.1.1.  Vertical Electric Dipole (VED)

An incremental vertical current element placed a height h above the half plane in the z direction
produces a z-directed component of the vector potential in regions 0 and 1.  For a VED, �z(�, z) is
independent of � and only the Ez, E!

, and H
3
 field components are radiated.  The Helmholtz

equations in both media must be satisfied and boundary conditions apply at the interface.  The
solution to the partial differential equation is simplified via the double Fourier transform.
Additionally, the specified geometry suggests a transformation to cylindrical coordinates that
introduces a Bessel function into the integral solution. The resulting Sommerfeld formulation for the
vector potential in region 0 is taken from [41] and is given by

where p is the dipole moment.  The source and image Green’s functions are defined as

respectively, where J0(��) is the Bessel function of the first kind and order zero.  The distances from
the observation point to the source and image are

respectively.  The Sommerfeld integral V is defined as

and the functions l and m are given by

Equation (7) is concise but not optimal for numerical evaluation given the electric properties of the
reflecting surfaces considered in this report.  An alternative form was used by van der Pol [45] and
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is given by

where

Under this convention, the sum  G0 + G1 represents the situation when the ground is perfectly
conducting and the Sommerfeld integral Q represents a correction for the lossy characteristics of
ground.  For the material properties considered, the formulation of equation (12) significantly
reduces the magnitude of the integrand in equation (13) and consequently improves the convergence
and accuracy of the numerical integration.

Relevant field components are extracted from equation (5) to form the following field expressions:

These general expressions were derived with no assumptions regarding proximity, wavelength, or
material composition and account for the near-surface and near-field effects we aim to observe. 

2.1.2.  Horizontal Electric Dipole (HED)

In the case of an incremental horizontal current element placed a height h above the half plane in the
x direction, Baños [41] employs the x and z components of the electric Hertz vector (i.e.,

).  The z components satisfy the homogeneous Helmholtz equation in each medium,�� � �ax�x� �az�z
and the x components satisfy the inhomogeneous Helmholtz equation in region 0 and the
homogeneous Helmholtz equation in region 1.  Imposition of the boundary conditions at the interface
gives vector potential solutions for region 0 that are substituted into equation (5) to give field
expressions.  Sommerfeld formulations of the transverse-electric (TE) field components are
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and the transverse-magnetic (TM) field components are

Sommerfeld integrals U and W are defined by

Note that if one were to compare the VED and HED Sommerfeld formulations given in this report
to the corresponding expressions in [41], then a number of differences would be observed.  These
differences are due to an opposite time convention and rotation of the spatial coordinate axes.  The
opposite time convention causes the opposite sign in the exponent of G0 and G1.  Rotation of the
coordinate axes flips the leading sign of many of the field equations, the sign in front of z in
numerous exponential exponents, and the sign of W.

2.2.  Geometric Optics and Norton Surface-Wave Approximation

Special cases exist where closed-form approximations are obtainable.  Geometric optics is a far-field
approximation that assumes the source, observation point, and reflecting surface are many
wavelengths apart.  Also, the Norton surface-wave term may be used to approximate surface-wave
effects when k0R0 » 1 and |k1| > |k0|.
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2.2.1.  Vertical Electric Dipole (VED)

If the observation point is in the far field of the source, then the approximations to fields resulting
from a vertical electric dipole above a half plane are given by

where �d and �r are shown in Figures 1 and 2.  The first two terms make up the GO approximation
which involves the Fresnel reflection coefficient �� (see Section 2.2.3).  The third term is Norton’s
surface-wave approximation, which was obtained from a high-refractivity, far-field approximation
to V [42].  The Norton term incorporates an attenuation function given by

For a homogeneous half-space the remaining variables are defined as 

The Norton surface-wave terms are valid only when k0R0 » 1 and |k1| > |k0| due to assumptions made
when deriving equations (18), (19), and (20).

2.2.2.  Horizontal Electric Dipole (HED)

For observation points in the far field of a horizontal dipole above a homogeneous half plane, the
TE fields are given by
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and the TM components in the far field are given by

where �d and �r are shown in Figures 1 and 2, the sum of the first two terms is the geometric optics
approximation, and the third term is the Norton surface-wave term.  For a homogeneous half-space
the remaining variables are defined as 

Similar to the VED case, the Norton surface-wave terms are valid only when k0R0 » 1 and |k1| > |k0|.
The following section provides a summary of Fresnel reflection coefficients to complete the far-field
formulation of the fields radiated by incremental dipoles above a half-space.

2.2.3.  Fresnel Reflection Coefficients

Detailed derivations for the expressions given in this section may be found in standard
electromagnetic texts, such as [47].  Electric field polarization is defined relative to the plane of
incidence, which contains the normal to the reflecting surface and the incident propagation vector
(see Figures 1 and 2).  Parallel polarized electric fields lie in the plane of incidence and perpendicular
polarized fields are orthogonal.  The E-field Fresnel reflection coefficients at a plane boundary are

where the transmitted angle and intrinsic wave impedance of region 1 are complex and defined as

respectively.  Figure 3 illustrates �� and  �] for various material properties and frequencies.
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Figure 3. Parallel (line) and perpendicular (dash) Fresnel reflection coefficients versus angle of incidence for
0r=5. Legend displays conductivity 1 [S/m].

3.  NUMERICAL INTEGRATION TECHNIQUES

To evaluate the accuracy of GO, we must analyze near-field interaction and propagation effects near
the interface.  General solutions for fields radiated by a VED or an x-aligned HED are obtained via
numerical evaluation of Sommerfeld integrals.  In this section, relevant numerical techniques are
presented with reference to [48-52].  Romberg integration for relatively well-behaved functions and
the weighted-averages method for evaluating asymptotically-oscillating slowly-convergent functions
are summarized.  Finally, specific details for the numerical evaluation of 2Q/k0

2, U, V, and W and
the necessary derivatives are given.

3.1.  Romberg Quadrature

Romberg integration is an effective means of integrating well-behaved integrands over a finite range
of integration by extrapolating the error associated with a prediction from previous iterations and
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subtracting the error to give a higher-order approximation.  To demonstrate this, consider the
trapezoidal rule

where �� is the distance between abscissae, parenthesized superscripts denote derivative order, and
O defines error order.  Equation (26) is a two-point formula and is exact for polynomials up to and
including degree 1.  If this equation is used N times for the equally-spaced intervals (�0, �1), (�1, �2),
..., (�N -1, �N) and summed, then the extended trapezoidal rule is

where Bn is a Bernoulli number.  If one evaluates the integral with N steps and then again with 2N
steps, then the leading error in the second evaluation will be ¼ the size of the error in the first
evaluation.  Therefore the combination

subtracts off the leading error term.  Similarly, Romberg integration uses Neville’s algorithm to
extrapolate the leading error term for high-order integrands.

3.2.  Weighted-Averages Method

The weighted-averages method is a useful numerical technique for integrating functions that are
periodic yet convergent over a semi-infinite integration range.  Sommerfeld integrals are inherently
oscillatory and slowly convergent due to the presence of Bessel functions.  We begin our discussion
of the weighted-averages method with the integration then summation technique [52], where the
integral is expressed as a limit of a sequence of partial sums
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Note that the Sommerfeld integrand was split into its characteristic factors, �(�) = �(�)J
#
(��)�.  Also,

�-1 is chosen to ensure that no singularities exist in the Sommerfeld tail �(|�� | > |�-1 |).  The sequence
SN approaches S slowly and the error or remainder complies with the following expression

where wN are remainder estimates specific to �(�).  Series acceleration methods are based on the idea
that information contained in the sequence of partial sums, S0, S1, ..., SN, is extracted and utilized in
a way that is more efficient than the conventional combination techniques.  If the weight, WN, is
associated with SN, then a general combination formula is

The second form shows that if

then the remainder  of the transformed sequence will be nullified.  The difficulty is determiningr �

N
rN from its asymptotic estimates.  Careful scrutiny leads to the generalized weighted-averages
algorithm, given as

where parenthesized superscripts denote transformation order and  is formulated in Section 3.3�
(5 )
N

for the integrands under consideration.  Equation (33) is a recursive scheme that produces  as theS(5 )
0

best approximation to S, given the partial sums S0, S1, ..., S5 , and accelerates the convergence.

3.3.  Numerical Evaluation of 2Q/k0
2, U, V, and W

Efficient numerical integration of the integrals associated with dipole radiation above a half plane
are now considered.  Table 1 summarizes the necessary Sommerfeld integrals and Figure 4 illustrates
the common traits among each integrand in the complex plane.  Derivatives were pulled inside the
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Sommerfeld integral Sommerfeld integrand, 2 asymptotic

1

-1

-1

0

-1

0

0, -1

U 1

0

0

-1

-1, -2

Table 1. Sommerfeld Integrands and Asymptotic Coefficients
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Figure 4. Sommerfeld poles and branch points in complex plane.
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integrals and each resulting Sommerfeld integrand, �, contains Bessel functions, exponential terms,
branch cuts, and possible poles.  These factors make analytic solutions unlikely, but provide a
commonality which allows for a single numerical integration scheme to evaluate all of the integrals.
In this approach the real-axis integration path is partitioned and specific numerical integration
techniques are used according to the integrand behavior in each subinterval.

Poles may cause strong variations in the integrand, such as those associated with V and W at

These poles are located in the fourth quadrant on the complex plane just below the real axis and
�(�pole) � k0 as well as in the second quadrant symmetric about the origin.  It was confirmed that they
have negligible effect on the real-axis integration path for the electric properties considered.

To avoid branch cuts, the integration path was partitioned into three subintervals [0, k0], [k0 , k0 �r ],
and  where different techniques were used according to specific difficulties encountered.[k0 �r , � ],
In the first subinterval, change of variables � = k0 cosu removed the discontinuity in the derivative
at k0, resulting in
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In the second subinterval, change in variable � = k0 coshv removed the discontinuity at k0 giving 

The integrands in equations (35) and (36) are well behaved and converge when numerically
integrated with Romberg quadrature.

The semi-infinite subinterval was chosen to begin at  because all singularities, poles, and�
	1 � k0 �r

branch points on the right half of the complex plane lie either on or to the left of the line defined by �(� ) � k0 �r.
 Change in variable was not necessary and the generalized weighted-averages algorithm was used
to numerically integrate the Sommerfeld integral tail.  The break points  were�N � k0 �r � N�/�
chosen based on the half-period of the Bessel function, �/�, and the weights were chosen according
to the analytical form of the remainder estimates, given by

A more detailed derivation of equation (37) was given by Michalski in [52].  This equation is based
on the asymptotic behavior of the Sommerfeld integrand, which is characterized by the asymptotic
coefficient � (given in Table 1) and the expressions

where C is a constant.  Applying equation (37) to equations (30) and (32) gives

which completes the weighted-averages formulation given by equation (33).
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4.  FREQUENCY-DOMAIN RESULTS

In this section, field-strength results and corresponding GO errors are illustrated in the frequency
domain.  Frequencies ranging from 10 to 8000 MHz (i.e., 30 � � �  0.0375 m) were chosen to
encompass the ISM bands at 902 - 928 MHz, 2.4000 - 2.4835 GHz, and 5.725 - 5.850 GHz where
unlicensed wireless LAN products operate [53].  In order for the theoretical received signals to
embody the channel transfer function, we simulate a flat-frequency transmitted spectrum by defining
the electric dipole moment as

First, VED results from a simple two-ray geometry at various ground conductivities are presented
to introduce the behavior of the two-ray model.  Next, position dependency is investigated to isolate
near-surface and near-field effects.  Lastly, field strength as a function of horizontal separation and
frequency is displayed in order to demonstrate the nature of the fields in a more general sense.
Throughout this report, superscripts (i.e., Ez

S, Ez
GO, Ez

GO+N) and colors (i.e., green, red, blue) are used
to distinguish between Sommerfeld, GO, and GO with Norton term results, and all fields are in dB
normalized to 1 V/m for E-fields or 1 A/m for H-fields.  Note that in many cases the curves are
indistinguishable because they lie on top of one another. 

4.1.  Conductivity Variation to Demonstrate Two-Ray Behavior

Electric properties are defined by the conductivity and relative dielectric constant of the lossy half
space; geometry is specified by height above the interface and horizontal separation.  In this section,
we consider {� [S/m]} = {0.00195, 0.195, 19.5, 1950}, �r = 5, and {h [m], z [m], � [m]} = {1, 1, 10}
in order to minimize the effect of the null in the radiation pattern of the VED source and to ideally
illustrate the nature of the two-ray model.  Figure 5 presents the numerically approximated
Sommerfeld solution with the GO approximation for the squared magnitude of Ez radiated by a VED.

As the electrical conductivity gets large, the Fresnel reflection coefficients approach plus or minus
unity and the field expressions approach the sum of the source and image Green’s functions G0 + G1.
This produces a two-ray cancellation effect where equally spaced nulls occur according to the
difference in path lengths, �R =  R1 - R0.  At lower conductivities, the reflected wave is less
influential because the Fresnel reflection coefficient decreases in magnitude and shifts in phase, thus
flattening the cancellation behavior and shifting the nulls in frequency.  Geometry associated with
the above case effectively demonstrates the behavior of a two-ray model and its dependence on
material properties.  For practical purposes, we limit the scope of the remainder of this analysis to
reflecting surfaces made of concrete.  Although the electric properties of concrete vary with
frequency [54], we assume that frequency-independent parameters (i.e., �r = 5 and � = 0.00195 S/m)
will provide representative results.
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Figure 5. Magnitude squared of the z component of the E-field for a VED above a half space
(z=1 m, h=1 m, !=10 m, 0r=5) at various conductivities.

4.2.  Position Variation to Isolate Near-Surface and Near-Field Effects

In this section, we position the source and observation points to isolate near-surface and near-field
effects.  Figures 6 and 7 illustrate fields radiated by a VED above a half plane, Figures 8 and 9 isolate
the TE waves of an x-aligned HED by limiting the observation points to � = 90�, and Figures 10 and
11 isolate the TM waves of an x-aligned HED by limiting the observation points to � = 0�.

For incremental electric dipoles, simulations show that near-field effects are substantially reduced
for � > 1 m excluding the E

!
 component of the HED-TM case; hence, we isolate near-surface effects

by holding the horizontal separation constant at 5 m and simultaneously reducing the source and
observation heights: {(h [m], z [m], � [m])} = {(10, 10, 5), (1, 1, 5), (0.1, 0.1, 5), (0.01, 0.01, 5)}.
It should be understood that near-field regions depend on antenna size and that ideal infinitesimal
dipole sources are non-realizable.  Figures 6, 8, and 10 demonstrate surface effects on field strength
and Sections 4.2.1 and 4.2.2 provide relevant observations and discussion.

It is shown later that for an elementary electric dipole above a concrete half plane, surface effects are
significantly reduced when h � 10 m and z � 10 m.  Therefore, we isolate near-field effects by
holding the source and observation points at a constant height of 10 m and reducing the horizontal
separation: {(h [m], z [m], � [m])} = {(10, 10, 10), (10, 10, 1), (10, 10, 0.1), (10, 10, 0.01)}.  Figures
7, 9, and 11 illustrate near-field effects in the frequency domain, and Section 4.2.3 provides analyses.
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Figure 7. Near-field effects on field strength of a VED above a concrete half space.
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Figure 6. Near-surface effects on field strength of a VED above a concrete half space.
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Figure 9. Near-field effects on field strength of an x-aligned HED above a concrete half space.
Observation points are restricted to 3=90(.
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Figure 8. Near-surface effects on field strength of an x-aligned HED above a concrete half
space.  Observation points are restricted to 3=90(. 
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Figure 11. Near-field effects on field strength of an x-aligned HED above a concrete half
space. Observation points are restricted to 3=0(.
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Figure 10. Near-surface effects on field strength of an x-aligned  HED above a concrete half
space. Observation points are restricted to 3=0(.
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4.2.1.  Surface Wave

Figures 6, 8, and 10 illustrate near-surface effects as the source and observation points are drawn
close to the interface.  Norton surface-wave terms provide a means to isolate surface-wave effects.
Near the interface, deviation from geometric optics due to surface-wave propagation peaks near d.c.
and decreases continuously with increasing frequency.  As expected, surface-wave propagation is
more influential in TM fields than in TE fields radiated by HED.  In comparison to the more general
Sommerfeld solution, GO + Norton term approximations seem adequate for predicting the radiation
of a VED above a half-plane; significant discrepancies, however, appear in the HED case where
near-field effects are influential, as discussed in the following sections.

4.2.2.  Pseudo-Lateral Wave

Sommerfeld results in Figure 8 show strong oscillations in the TE fields radiated by an x-aligned
HED over a wide range of frequencies when the source and observation point are near the interface
(i.e., h � 0.01 m and z � 0.01 m).  In this section, we provide alternative expressions for U, V, and
W to help explain this oscillation.

Notice that the HED-TE fields in equation (15) are strongly influenced by the integral U.  With
reference to [55], rationalization of the denominator in U and use of the integral representation of
G1 in equation (8) allows for it to be rewritten as

If we add and subtract 1 within the integrand and make use of 

then U can be expressed as

Close to the interface the integral term is relatively small and the first two terms depict two waves
traveling adjacent to one another but at different speeds due to the different propagation media.  The
two waves destructively interfere when -k0R1 � -k1R1 + 2�n, where n is an integer.  For the material
properties chosen and R1 = 5 m, the interference occurs approximately every 48.5 MHz which agrees
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with the oscillation observed.  The interference caused by the adjacent fields dies off as the source
and observation point are moved away from the surface, which suggests near-field excitation for
generating the pseudo-lateral wave.

By the same motivation, an alternative form of the Sommerfeld integral V is derived with reference
to [55].  As in the approach used in reformulating U, we add and subtract 1 within the integrand in
equation (10).  The denominator of V cannot be rationalized as with U, but the integral identity

allows for integration by parts, which produces two additive exponential terms.  Finally, change in
variable and identification of the integral form of the incomplete Hankel function, given by

completes the derivation and yields

where the positive form of equation (34) is used for �pole.  Values for incomplete Hankel functions
may be attained via numerical expansion.  A useful relation given by

provides the means for expressing the last Sommerfeld integral W in terms of V.

The leading terms of equations (43) and (46) show evidence of a pseudo-lateral wave, which
originates in the less dense media and propagates along the surface; it travels inside the dielectric
and is excited via near-field coupling.  This phenomenon resembles the lateral wave that has
application in geophysical exploration of the lithosphere [56] and propagation modeling in highly
vegetated environments [57].  Lateral waves are excited along a boundary between two media by a
source either at the interface or in the dense medium and travel atop the interface in the less dense
medium.  In Section 5, time-domain results will also illustrate the pseudo-lateral wave phenomenon,
where a pulse arrival time corresponding to the wave velocity of the dense media is shown.
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4.2.3.  Near-Field Effects on the Direct Ray

Electromagnetic fields in the near-field region were computed via numerical evaluation of
Sommerfeld integrals and compared to GO approximations in Figures 7, 9, and 11.  Note that Norton
surface wave approximations are not included in these plots because they are valid only in the far
field.  As separation decreases to � < 	, the direct ray is observed in the near field of the source, and
field components influenced by the direct ray (i.e., Ez and H

3
 for VED and E

3
 and Hz for HED-TE)

demonstrate deviation from the GO approximation at low frequencies due to near-field effects.  At
h = z = 10 m, the reflected ray travels well into the far field of the source before being reflected and
observed; consequently, field components influenced by the reflected ray and not the direct ray (i.e.,
E

!
 for VED, H

!
 for HED-TE, and Ez and H

3
 for HED-TM) show little near-field error.

The fields of the direct ray may be expressed in spherical coordinates as

Notice that Er is strictly a near- and intermediate-field expression with an  phaseexp(�j k0R0)
dependence that is not accounted for in the geometric optics expressions.  If �d = 0�, then Er is
equivalent to the direct-ray of E

!
 in the HED-TM case and near-field influence is maximized in the

null of the antenna pattern because the cos�d factor is equal to 1.  In Figures 10 and 11, the E
!

component of the HED-TM radiated field displays an oscillatory deviation from the GO + Norton
term approximation when locations are many wavelengths from the interface and from each other.
In this scenario, the near-field direct ray is comparable in magnitude to the reflected ray, hence
causing a near-field direct ray plus a GO reflected ray cancellation pattern.  Further discussion is
given in the time-domain results section where the results are more intuitive.

4.3.  Contour Plots to Observe Two-Ray Behavior

We assigned the field strength and corresponding GO error to colors and plotted those colors versus
frequency and horizontal separation for constant h and z; this allows us to visualize the results in a
more general sense.  Appendix A displays numerical solutions to Sommerfeld formulations, residual
errors (i.e. ||Ez

S|2 - |Ez
GO|2| [dB]), and dashed lines on the residual error plots representing the R0 = 10	

contour to provide a geometric guideline.  Note that these results have low resolution in frequency,
so highly oscillatory behavior may not be seen.
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Figure 12. Signal representations.

Half the figures in Appendix A present cases where the source and observation points lie on the same
horizontal plane {(h [m], z [m])} = {(10, 10); (1, 1); (0.1, 0.1); (0.01, 0.01)}. In these plots, observe
the decrease in two-ray cancellation frequency with increasing �R (i.e., constant � and decreasing
height) when the direct and reflected rays are both present.  Also notice the error magnification near
the Brewster angle.  The remaining figures in Appendix A give representative contour plots for
source and observation points at different heights {(h [m], z [m])} = {(1, 10); (0.1, 10); (0.1, 1);
(0.01, 1)}.  Notice the effect of the source antenna pattern; that is, if the observation point is not at
a null in an antenna pattern, then the two-ray cancellation effect becomes visible.

5.  TIME-DOMAIN ANALYSIS

Field strength plots in the frequency domain are descriptive, but the practical significance of the
results are difficult to interpret.  Of more importance to the digital communications engineer is how
the errors translate to the time domain.  In order to assess the practical significance of GO error for
indoor scenarios, we compute the delay spread of the channel impulse response and quantify the
cumulative error seen in the frequency domain.  This section provides a detailed explanation of the
time-domain analyses used in this report.

Digital signals are typically transmitted by some type of carrier modulation.  The transmitted signal
is limited in bandwidth to an interval of frequencies centered around the carrier or center frequency
(i.e., �c = 2�fc) and must be real-valued in the time domain in order to have a physical interpretation;
consequently, it is complex-conjugate symmetric about d.c. in the frequency domain.  For
mathematical convenience with no loss in generality, the passband signal may be expressed as a
complex-baseband representation.  This is accomplished by first filtering out the negative
frequencies to produce an analytic signal.  In the time domain, the real and imaginary parts of the
analytic signal are a Hilbert transform pair.  Next, we shift the analytic signal down to baseband to
give a complex-baseband representation of the original passband signal.  A pictorial representation
of real-time, analytic, and complex-baseband signals is given in Figure 12 and more extensive
discussions can be found in [58, 59].
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g(t,� ) � �v ·
�e(t,� )
�h(t,� )

, (49)

�e(t,� ) � FT 	1[ �E(t,���c)
(���c)]
�h(t,� ) � FT 	1[ �H(t,���c)
(���c)] ,

(50)

The impulse response of the channel can be given by

where  is a unit direction vector corresponding to the receive antenna.  The complex-baseband�v
representation of the applicable vector field components,  and , is given by�e(t,�) �h(t,�)

where FT-1 is the inverse Fourier transform operator, � is the transform variable, and 
(�) is a scalar
window function that filters out negative frequencies and defines pulse shape and bandwidth.

We seek an expression for the squared magnitude of the impulse response |g(t,�)|2 in terms of electric
and magnetic field variables in order to compute delay spread via equations (2) and (3).  Depending
on the type and orientation of the receive antenna, one or some combination of the field components
will be the dominant coupling mechanism.  Orientation, radiation pattern, and efficiencies of the
receive antenna are fairly arbitrary and only clutter the field effects we wish to observe.  For
simplification purposes, we examine each field component at the observation point separately.  This
augments the influence of the propagation mechanisms, generalizes the results, and allows for
flexible receive antenna specification to be easily realized.  In the following subsections, we discuss
optimal pulse shapes and frequency considerations for indoor scenarios.

5.1.  Windowing Techniques to Optimize Pulse Shape

In this section we address time-domain pulse shaping issues associated with the choice of 
(�).  It
is desirable to choose a window that produces a well-behaved pulse shape for large dynamic ranges.
The single-ray scenario (i.e., source and observation points existing in infinite space) allows us to
analyze delay spread sensitivity to threshold for a given pulse shape.  We computed a single-ray
impulse response and its corresponding delay spread as a function of threshold (i.e., 0 to 40 dB
below the peak) for four windows (i.e., flat, Hanning, Hamming, and Blackman).  Results are shown
in Figure 13.  As expected, the behavior of the flat window is undesirable because of its high
sidelobes in the time-domain and sensitivity to threshold.  If one considers threshold levels between
20 and 40 dB then the Hamming window is optimal because it has the most narrow well-behaved
pulse shape.  Henceforth, the Hamming window is applied to all results.  Use of non-rectangular
windows allows us to speak in terms of bandwidth BW (i.e., 3-dB bandwidth).  For a Hamming
window, bandwidth is about 35% of the total frequency content.
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Figure 13. Windows, pulse shapes, and single-ray delay spread
versus threshold.

5.2.  Practical Bandwidth Limitations

We aim to describe how radio-propagation channels limit communication system performance.
Simulation and measurement of broader frequency bands produce narrower pulses and more
effectively distinguish multipath contributors as well as subtle near-surface and near-field effects.
Consequently, the resulting impulse response contains more information and is a more general
description of the channel.  Here we consider a pragmatic upper limit to bandwidth.

Current WLAN systems operate within allocated bands with less than 100 MHz bandwidth.  Broader
bandwidths are achievable and are in demand.  In order to extend the relevance of this study, we do
not limit our focus to allocated operational bandwidths.  It is reasonable, however, to confine
simulation bandwidths to those achievable by wideband measurement systems, which are hardware
limited.  Typically, impulse response measurement systems are limited by the digitizer’ s analog
bandwidth, which is on the order of 1 GHz [60].  Henceforth, we limit our simulation bandwidth to
1 GHz, impose the frequency constraint 0 < f < 2fc to avoid overlap into negative frequencies, and
limit the center frequency to 900 � fc � 5800 MHz.  Notice that if fc � 1.35 GHz, then the bandwidth
is limited by the 0 < f < 2fc constraint (e.g., the 900-MHz signal shown in Figure 13).

It should also be noted that results are computed at discrete frequencies, and if too few points are
used then the noise floor rises in the time domain due to the correlating nature of the inverse Fourier
transform in equation (50).  The frequency step dictates the pulse repetition rate of the transformed
signal according to PRR = 1/fstep, and should be chosen so that influential multipath components
arrive before the repetition rate elapses.  The maximum dimension considered in this report is 10 m;
therefore, a frequency step of 10 MHz (i.e., PRR = 100 ns) is sufficient for two-dimensional
scenarios because the maximum delay is approximately �max = (202 + 102 )½ ÷ 3x108 � 75 ns.
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6.  TIME-DOMAIN RESULTS

Time-domain results corresponding to previously specified geometries are presented in this section.
First, we consider the worse-case scenario (i.e., fc = 900 MHz, BW � 600 MHz) by maximizing the
influence of low frequencies.  This illustrates propagation effects in the time domain and their
influence on delay spread.  Next, we shift the center frequency up into the next relevant bands to
demonstrate fc and BW dependence.  Delay spread versus center frequency and bandwidth is
presented in order to assess the practical significance of errors associated with GO approximations
for indoor scenarios.

6.1.  Impulse Responses for Wideband Signals Centered at 900 MHz

Impulse responses for a wideband signal centered at 900 MHz (i.e., 	c = 0.33 m) are given in Figures
14 - 19.  Since low frequencies have the most influence, this is the worst scenario considered here.
The eight geometries used in the frequency-domain analysis were maintained in order to isolate the
near-surface and near-field effects.  Given the large data set, a summary of basic observations is
given to avoid unnecessary confusion:

1) Near the interface (i.e., h � 0.1 m and z � 0.1 m), the direct and reflected rays overlie each other
if the time resolution of the pulse cannot resolve the rays.

2) The presence of a specific ray depends on the observed field component (e.g., if h = z, then the
direct ray is below the noise floor in E

!
 for VED, H

!
 for HED-TE, and Ez and H

3
 for HED-TM).

3) Individual rays may be affected by the antenna pattern, by transmission into the dielectric half
plane, and by free-space loss (e.g., if h = z and � is small, then the reflected ray from a VED is
strongly attenuated by the source antenna pattern).

Near-surface effects are best observed at h = z = 0.01 m in Figures 14, 16, and 18.  The blue curve
(i.e., GO + Norton term) isolates surface-wave effects.  In the frequency domain, the surface wave
causes a sharp increase in field strength concentrated at d.c.; in the time domain, this corresponds
to a raised noise floor.  Also, the surface wave has an exp(-jk0R1) phase dependence, arrives at the
observation point along with the reflected ray, and enhances signal strength at that delay. The green
curve (i.e., numerical evaluation of Sommerfeld integrals) demonstrates the more influential pseudo-
lateral wave, which causes a delayed pulse near 37 ns.  A simple calculation shows that a wave
propagating 5 m through concrete at (�µ0)

-½ � 1.34×108 m/s arrives at the observation point with a
37.4 ns delay.

As shown in Figures 15, 17, and 19, the reactive nature of the near field dominates for � � 0.1 m.
This is expected, as the separation is well within the carrier wavelength.  When the direct ray is
observed in the near field, GO error increases because the magnitude of the direct pulse and the noise
floor rise.  For this frequency band, the geometric optics approximation fails for � � 0.1 m if the
direct ray is significant.
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Figure 14. Near-surface effects on impulse responses of a VED above a concrete half space
( fc=900 MHz, BW�660 MHz, threshold=-30 dB). Legends display Sommerfeld,
GO + Norton term, and GO approximations to delay spread.
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Figure 15. Near-field effects on impulse responses of a VED above a concrete half space
(fc=900 MHz, BW�660 MHz, threshold=-30 dB). Legends display Sommerfeld
and GO approximations to delay spread.
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Figure 16. Near-surface effects on impulse responses of an x-aligned HED above a concrete
half space (fc=900 MHz, BW�660 MHz, threshold=-30 dB, 3=90(). Legends
display Sommerfeld, GO + Norton term, and GO approximations to delay spread.

0 20 40 60 80
−120

−100

−80

−60

−40

−20
HED(TE): h=10 m, z=10 m, ρ=10 m

τ [ns]

|e φ(t,
τ)|

2  [d
B]

7.47 ns
7.47 ns

0 20 40 60 80
−180

−160

−140

−120

−100

−80
HED(TE): h=10 m, z=10 m, ρ=10 m

τ [ns]

|h
z(t,

τ)|
2  [d

B]

3.37 ns
3.37 ns

0 20 40 60 80
−180

−160

−140

−120

−100

−80
HED(TE): h=10 m, z=10 m, ρ=10 m

τ [ns]

|h
ρ(t,

τ)|
2  [d

B]

0.29 ns
0.29 ns

0 20 40 60 80
−100

−80

−60

−40

−20

0
HED(TE): h=10 m, z=10 m, ρ=1 m

τ [ns]

|e φ(t,
τ)|

2  [d
B]

0.35 ns
0.29 ns

0 20 40 60 80
−160

−140

−120

−100

−80

−60
HED(TE): h=10 m, z=10 m, ρ=1 m

τ [ns]

|h
z(t,

τ)|
2  [d

B]

0.29 ns
0.29 ns

0 20 40 60 80
−180

−160

−140

−120

−100

−80
HED(TE): h=10 m, z=10 m, ρ=1 m

τ [ns]

|h
ρ(t,

τ)|
2  [d

B]

0.3 ns
0.3 ns

0 20 40 60 80
−80

−60

−40

−20

0

20
HED(TE): h=10 m, z=10 m, ρ=0.1 m

τ [ns]

|e φ(t,
τ)|

2  [d
B]

24.19 ns
0.3 ns

0 20 40 60 80
−140

−120

−100

−80

−60

−40
HED(TE): h=10 m, z=10 m, ρ=0.1 m

τ [ns]

|h
z(t,

τ)|
2  [d

B]

2.41 ns
0.3 ns

0 20 40 60 80
−180

−160

−140

−120

−100

−80
HED(TE): h=10 m, z=10 m, ρ=0.1 m

τ [ns]

|h
ρ(t,

τ)|
2  [d

B]

0.3 ns
0.3 ns

0 20 40 60 80
−50

0

50

100
HED(TE): h=10 m, z=10 m, ρ=0.01 m

τ [ns]

|e φ(t,
τ)|

2  [d
B]

24.2 ns
0.3 ns

0 20 40 60 80
−120

−100

−80

−60

−40

−20
HED(TE): h=10 m, z=10 m, ρ=0.01 m

τ [ns]

|h
z(t,

τ)|
2  [d

B]

11.57 ns
0.3 ns

0 20 40 60 80
−180

−160

−140

−120

−100

−80
HED(TE): h=10 m, z=10 m, ρ=0.01 m

τ [ns]

|h
ρ(t,

τ)|
2  [d

B]

0.3 ns
0.3 ns

Figure 17. Near-field effects on impulse responses of an x-directed HED above a concrete
half space (fc=900 MHz, BW�660 MHz, threshold=-30 dB, 3=90(). Legends
display Sommerfeld and GO approximations to delay spread.
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Figure 19. Near-field effects on impulse responses of an x-aligned HED above a concrete
half space (fc=900 MHz, BW�660 MHz, threshold=-30 dB, 3=0(). Legends
display Sommerfeld and GO approximations to delay spread.
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Figure 18. Near-surface effects on impulse responses of an x-aligned HED above a concrete
half space (fc=900 MHz, BW�660 MHz, threshold=-30 dB, 3=0(). Legends
display Sommerfeld, GO + Norton term, and GO approximations to delay spread.
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Figure 20. Combination of a near-field direct ray and far-field reflected ray for an x-aligned
HED above a concrete half space (3=0().

Interesting observations are found in the HED-TM results in Figures 18 and 19, in which the
observation points lie directly in the null of the x-aligned HED antenna pattern.  As mentioned
earlier, the transverse field components (i.e., ez and h

3
) corresponding to the direct pulse are

attenuated due to the orientation of the dipole.  The radial component (i.e., e
!
) corresponding to the

direct ray, however, is influential due to near- and intermediate-field propagation.

Geometric optics predictions may be improved by including near-field terms when computing the
direct-ray field components.  When considering an x-aligned HED at z = h and � = 0�, the analytic
expression for E

!
 corresponding to the direct ray is equivalent to Er of equation (48) with �d = 0�.

For the geometry {(h [m], z [m], � [m])} = {(10, 10, 1)}, the direct ray was calculated via equation
(48), the reflected ray was calculated via the second term of equation (22), and the magnitude of the
individual rays along with the magnitude of their sum are displayed as a function of frequency in
Figure 20.  Notice that the near-field direct ray is comparable in magnitude to the reflected ray.  The
two rays destructively interfere, as shown in grey, which agrees with the Sommerfeld solution in
Figure 11.  The magnitude of the direct ray is frequency sensitive, as shown in the impulse responses
in Figure 20.  At fc = 900 MHz, the spread of the impulse response is dominated by the high noise
floor, which corresponds to the strong near fieldss near d.c.  At higher frequencies the high noise
floor is avoided, but the near-field direct ray produces high delay spreads as its magnitude
approaches the magnitude of the reflected ray.  Given the close confinement of most indoor channels,
it seems logical to use the general expressions to account for near-field effects on the direct ray.

6.2.  Impulse Responses for Wideband Signals Centered at 2.4 GHz and 5.8 GHz

Appendices B and C show impulse response results for carrier frequencies at 2.4 GHz and 5.8 GHz,
respectively, at maximum bandwidth (i.e., BW = 1 GHz).  The wider frequency range produces more
narrow pulses in the time domain.  As shown by the delay spreads, near-surface and near-field errors
were reduced significantly at higher center frequencies because low frequencies had less influence.
These errors, however, are not negligible.  Appendix D provides delay spread curves as a function
of bandwidth for center frequencies at 900 MHz, 2.4 GHz, and 5.8 GHz.  These plots demonstrate
that GO accuracy depends on frequency content and show cases where considerable GO error occurs
for signals as high as 5.8 GHz.
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6.3.  Delay Spread Versus Bandwidth and Carrier Frequency

Thus far, we have demonstrated significant GO error in practical indoor scenarios and its dependence
on material composition, geometry, and center frequency.  This section helps to determine under
what frequency conditions GO is valid.

Figures 21 - 26 are contour plots of delay spread (from the numerical evaluation of Sommerfeld
integrals) versus bandwidth and carrier frequency.  White areas indicate where negative frequencies
would be encountered.  Figures 27 - 32 are contour plots of percentage error (associated with the GO
approximation) versus bandwidth and carrier frequency.  Percentage error is formulated as

where v stands for the relative field component.  From these plots we draw the following conclusions
based on delay spread results of elementary electric dipoles above a concrete half space for typical
indoor dimensions and frequencies:

1) Surface-wave effects are significant for heights on the order of 0.1m or less at BW > 0.6 fc for
TM fields radiated by VED and HED sources.

2) Pseudo-lateral-wave effects are significant for heights on the order of 0.01 m or less at  fc < 1.8
GHz for E

!
 fields radiated by a VED source, fc < 3.8 GHz for TE fields radiated by a HED

source, fc < 1.8 GHz for Ez fields radiated by a HED source, and fc < 2.5 GHz for E
!
 fields

radiated by a HED source.
3) Near-field effects are significant for separation on the order of 0.1 m or less at BW > 0.6 fc for

transverse fields radiated by VED and HED sources.
4) Near-field effects are significant for radial fields observed in the null of the antenna patterns of

VED and HED sources.

7.  CONCLUSION

In this report, we evaluated the error associated with GO predictions for indoor propagation models.
Our conclusions were based on results from the classical problem of elementary dipoles above a
lossy half space.  Exact (i.e., Sommerfeld) and approximate (i.e., GO and GO + Norton surface-wave
term) formulations for vertical and horizontal dipole sources were summarized, and numerical
schemes for evaluating the complex integrals in the Sommerfeld formulation were given.  Eight
canonical geometries were chosen to isolate individual propagation effects on relevant field
components.  Most scenarios were limited to material properties appropriate for concrete and
physical dimensions up to 10 m and as small as 1 cm.  Results were given in both the frequency and
time domains.
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Figure 22. Near-field effects on delay spread versus BW and center frequency for a VED
above a concrete half space (Hamming window, threshold=-30 dB).
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Figure 21. Near-surface effects on delay spread versus BW and center frequency for a VED
above a concrete half space (Hamming window, threshold=-30 dB).
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Figure 24. Near-field effects on delay spread versus BW and center frequency for a HED
above a concrete half space (Hamming window, threshold=-30 dB, 3=90().
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Figure 23. Near-surface effects on delay spread versus BW and center frequency for a HED
above a concrete half space (Hamming window, threshold=-30 dB, 3=90().
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Figure 26. Near-field effects on delay spread versus BW and center frequency for a HED
above a concrete half space (Hamming window, threshold=-30 dB, 3=0().
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Figure 25. Near-surface effects on delay spread versus BW and center frequency for a HED
above a concrete half space (Hamming window, threshold=-30 dB, 3=0().
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Figure 28. Near-field effects on % error delay spread versus BW and center frequency for a
VED above a concrete half space (Hamming window, threshold=-30 dB).
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Figure 27. Near-surface effects on % error delay spread versus BW and center frequency for
a VED above a concrete half space (Hamming window, threshold=-30 dB).
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Figure 30. Near-field effects on % error delay spread versus BW and center frequency for a
HED above a concrete half space (Hamming window, threshold=-30 dB, 3=90().
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Figure 29. Near-surface effects on % error delay spread versus BW and center frequency for
a HED above a concrete half space (Hamming window, threshold=-30 dB, 3=90().
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Figure 32. Near-field effects on % error delay spread versus BW and center frequency for a
HED above a concrete half space (Hamming window, threshold=-30 dB, 3=0().
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Figure 31. Near-surface effects on % error delay spread versus BW and center frequency for
a HED above a concrete half space (Hamming window, threshold=-30 dB, 3=0().
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As expected, GO predictions agreed with the numerical approximations to Sommerfeld integrals
when the source and observation points were multiple wavelengths above the surface and multiple
wavelengths apart.  By drawing the points close to the surface and close together, we were able to
isolate classic surface-wave and near-field effects and observe an additional propagation mechanism
we call the pseudo-lateral wave.  Frequency-domain observations are summarized as follows:

Surface-wave observations in the frequency domain
1) Surface-wave effects peak at d.c. and decrease sharply with increasing frequency.
2) Surface-wave propagation is more influential in TM fields than in TE fields.

Pseudo-lateral-wave observations in the frequency domain
3) Pseudo-lateral-wave effects are influential over a broad range of frequencies.
4) Pseudo-lateral-wave propagation is more influential in TE fields than in TM fields.

Near-field observations in the frequency domain
5) Near-field effects peak at d.c. and decrease sharply with increasing frequency.
6) Near-field error depends on the individual propagation paths and field components.
7) Near-field effects are significant for radial fields observed in the null of the dipole antenna

pattern at observation points many wavelengths away.

These observations demonstrated frequency dependency and interesting electromagnetic behavior,
but they were fairly inconclusive; hence, we transformed the results to the time domain in order to
assess the practical significance of the propagation mechanisms.

Frequency domain results were translated into band-limited impulse responses.  The frequency
content was specified by center frequency and bandwidth, and time dispersion was quantified via
delay spread.  Time-domain observations are summarized as follows:

Surface-wave observations in the time domain
1) Surface waves create a pulse at the reflected-ray delay and increase the noise floor.
2) Surface-wave effects are significant for heights on the order of 0.1 m or less at BW > 0.6 fc for

TM fields radiated by VED and HED sources.
Pseudo-lateral-wave observations in the time domain

3) Pseudo-lateral-wave pulses are delayed according to the electric properties of the dielectric.
4) Pseudo-lateral-wave effects are significant for heights on the order of 0.01 m or less at

a) fc < 1.8 GHz for E
!
 fields radiated by a VED source,

b) fc < 3.8 GHz for TE fields radiated by a HED source,
c) fc < 1.8 GHz for Ez fields radiated by a HED source, and
d) fc < 2.5 GHz for E

!
 fields radiated by a HED source.

Near-field observations in the time domain
5) Near-field effects increase the noise floor.
6) Near-field effects are significant for separation on the order of 0.1 m or less at BW > 0.6 fc for

transverse fields radiated by VED and HED sources.
7) Near-field effects can be predominant for radial fields observed in the null of the antenna

patterns of VED and HED sources.
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Conditions which cause the GO approximation to be invalid depend on the transmit and receive
antennas and their position, on the material composition of the reflecting surface, and on the
operational frequency band.  General expressions for incremental electric dipoles above a half space
have been provided to improve the accuracy of GO predictions by accounting for surface-wave and
near-field effects.  More specifically, the GO approximation may be complemented by the Norton
surface-wave terms in equations (18), (21), and (22) when k0R0 » 1 and |k1| > |k0| and by the near-field
terms in equation (48) to model the direct ray.  These expressions, however, apply only to elementary
dipoles above a dielectric half space.  Care should be taken when modeling actual antennas and
finite-thick reflection surfaces.

As demonstrated, pseudo-lateral wave effects can be severe.  The leading terms of equations (43)
and (46) show evidence of the pseudo-lateral wave; these equations, however, are cumbersome and
require numerous derivatives and substitutions in order to acquire field equations.  A more
mathematically rigorous derivation is necessary in order to provide a closed-form asymptotic
approximation to the pseudo-lateral wave.
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